Catalytic Converter Damage

Catalyst poisoning occurs when the catalytic converter is exposed to exhaust containing substances that coat the working surfaces, encapsulating the catalyst so that it cannot contact and treat the exhaust. The most-notable contaminant is lead, so vehicles equipped with catalytic converters can be run only on unleaded fuels. Other common catalyst poisons include fuel sulfur, manganese (originating primarily from the gasoline additive MMT), and silicone, which can enter the exhaust stream if the engine has a leak that allows coolant into the combustion chamber. Phosphorus is another catalyst contaminant. Although phosphorus is no longer used in gasoline, it (and zinc, another low-level catalyst contaminant) was until recently widely used in engine oil antiwear additives such as zinc dithiophosphate (ZDDP). Beginning in 2006, a rapid phaseout of ZDDP in engine oils began.

Depending on the contaminant, catalyst poisoning can sometimes be reversed by running the engine under a very heavy load for an extended period of time. The increased exhaust temperature can sometimes liquefy or sublimate the contaminant, removing it from the catalytic surface. However, removal of lead deposits in this manner is usually not possible because of lead’s high boiling point.

Any condition that causes abnormally high levels of unburned hydrocarbons—raw or partially burnt fuel—to reach the converter will tend to significantly elevate its temperature, bringing the risk of a meltdown of the substrate and resultant catalytic deactivation and severe exhaust restriction. Vehicles equipped with OBD-II diagnostic systems are designed to alert the driver to a misfire condition by means of flashing the “check engine” light on the dashboard.