Catalytic Converter Installation

Many vehicles have a close-coupled catalysts located near the engine’s exhaust manifold. This unit heats up quickly due to its proximity to the engine, and reduces cold-engine emissions by burning off hydrocarbons from the extra-rich mixture used to start a cold engine. When catalytic converters were first introduced, most vehicles used carburetors that provided a relatively rich air-fuel ratio. Oxygen (O2) levels in the exhaust stream were generally insufficient for the catalytic reaction to occur efficiently, so most installations included secondary air injection which injected air into the exhaust stream to increase the available oxygen and allow the catalyst to function. Some three-way catalytic converter systems have air injection systems with the air injected between the first (NOx reduction) and second (HC and CO oxidation) stages of the converter. As in the two-way converters, this injected air provides oxygen for the oxidation reactions. An upstream air injection point, ahead of the catalytic converter, is also sometimes present to provide oxygen during engine warmup, which causes unburned fuel to ignite in the exhaust tract before reaching the catalytic converter. This reduces the engine runtime needed for the catalytic converter to reach its “light-off” or operating temperature.

Many newer vehicles do not have air injection systems. Instead, they provide a constantly varying air-fuel mixture that quickly and continually cycles between lean and rich exhaust. Oxygen sensors are used to monitor the exhaust oxygen content before and after the catalytic converter and this information is used by the Electronic control unit to adjust the fuel injection so as to prevent the first (NOx reduction) catalyst from becoming oxygen-loaded while ensuring the second (HC and CO oxidization) catalyst is sufficiently oxygen-saturated.